Humidity Sensing in Drosophila

نویسندگان

  • Anders Enjin
  • Emanuela E. Zaharieva
  • Dominic D. Frank
  • Suzan Mansourian
  • Greg S.B. Suh
  • Marco Gallio
  • Marcus C. Stensmyr
چکیده

Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila

Insects use hygrosensation (humidity sensing) to avoid desiccation and, in vectors such as mosquitoes, to locate vertebrate hosts. Sensory neurons activated by either dry or moist air ('dry cells' and 'moist cells') have been described in many insects, but their behavioral roles and the molecular basis of their hygrosensitivity remain unclear. We recently reported that Drosophila hygrosensation...

متن کامل

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

Barium Oxide nanoparticles with robust catalytic, photocatalytic and humidity sensing properties

Barium Oxide(BaO) nanoparticles were synthesized by simple co-precipitation method and were investigated by the catalytic activity of synthesized barium oxide nanopaticles was enumerated by epoxidation of styrene. The reaction was carried out and the product was obtained at higher efficiency. Particularly, the photocatalytic efficiency was estimated by degradation of Rhodamine-B (RhB) dye using...

متن کامل

Synthesis, Humidity Sensing, Photocatalytic and Antimicrobial Properties of Thin Film Nanoporous PbWO4-WO3 Nanocomposites

A humidity sensor thin film based on nanoporous PbWO4-WO3 composites has been prepared by spin coating technique with different weight ratio of PbWO4 (Pb) and WO3 (WO) (PWWO-01, PWWO-82, PWWO-64, PWWO-46, PWWO-28, PWWO-01) and their humidity sensing properties have also been investigated at different relative humidity (RH) in the range of 5% - 98% at room temperature with dc resistance. It is f...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016